Physics meeting, February 29, 2000

$$\mathbf{g}\mathbf{b} \rightarrow \mathbf{H}^{+}\overline{\mathbf{t}}; \quad \mathbf{H}^{+} \rightarrow \tau^{+}\nu, \quad \overline{\mathbf{t}} \rightarrow \overline{\mathbf{b}}\mathbf{q}\overline{\mathbf{q}}$$

R. Kinnunen

Production in PYTHIA through:

$$g\overline{b} \rightarrow H^{+}\overline{t}$$

Normalization of the cross section to the results from Moretti & Roy,

for
$$m_{H+}=400 \text{ GeV}$$
, $\tan \beta = 40$: $\sigma \sim 1 \text{ pb}$

 $BR(H^+ \rightarrow \tau \nu)$ from HDECAY:

$$m_{H+}$$
=407 GeV, $tan\beta = 30$ 14.1%

$$m_{H+}$$
=214 GeV, $tan\beta = 15$ 36.8%

τ decay with polarization implemented to PYTHIA

according to D. P. Roy

Branching ratios, H⁺, no stop mixing

τ polarization in

$$gb \to H^+ \overline{t}; \ H^+ \to \tau^+ \nu, \ \overline{t} \to \overline{b} q \overline{q}$$

Main contributions to 1-prong decays

$$\tau \to \pi^+ \nu$$
 12.5%

$$\tau \to \rho^+ \nu \to \pi^+ \pi^0 \nu$$
 26%

$$\tau \to a_1 \nu \to \pi^+ \pi^0 \pi^0 \nu$$
 7.5%

Effect of τ polarization in H^{\pm} compared to W^{\pm} decays:

harder pions from $\tau^+ -> \pi^+ \nu$ and longitudinal components of ρ and a_1 in H^+ than in W^\pm

 τ decay with polarization included in PYTHIA using the matrix elements and program of D.P. Roy

Trigger requirements for

$$\mathbf{g}\mathbf{b} \rightarrow \mathbf{H}^{+}\overline{\mathbf{t}}; \quad \mathbf{H}^{+} \rightarrow \tau^{+}\nu, \quad \overline{\mathbf{t}} \rightarrow \overline{\mathbf{b}}\mathbf{q}\overline{\mathbf{q}}$$

- Almost background-free signal in $m_T(\tau v)$ is expected only in the purely hadronic channel with $W \rightarrow qq'$
- τ polarization provides a large reduction of the $t\bar{t}$ background in the hadronic one prong decay channel $\tau \rightarrow \pi^+ + \nu$
- a purely hadronic trigger with $n_{jet} < 4 \ (E_t^{\ jet} > 20 \ GeV)$ including one hard τ jet $(E_t^{\ jet} > 100 \ GeV)$ is needed

pp -> $\overline{t}H^+$, H^+ -> $\tau \nu$, τ^+ -> $\pi^+ \nu$ with t -> lepton + ν + b, p_t^l > 20 GeV

Preliminary results for $m_T(lepton, E_t^{miss})$ for 100 fb⁻¹

$$pp \rightarrow tH^{+}, H^{+} \rightarrow \tau v, t \rightarrow qqb$$

$$using$$

$$\tau \rightarrow lepton + v_{\tau} + v_{l}, p_{t}^{l} > 30 \text{ GeV}$$

 $\boldsymbol{\tau}$ polarization effects cannot be exploited

Preliminary results for $m_T(lepton, E_t^{miss})$ for 100 fb⁻¹

Events expected for $m_T(lepton, E_t^{miss}) > 200 \text{ GeV}$:

$$H^{+}(m_{H}=400 \text{ GeV}, \tan\beta = 30)$$
 58
 $t\bar{t}$ 1374

Jets in tH^+ , $H^+ \rightarrow \tau \nu$, $t \rightarrow qqb$ events

Reconstruction with CMSJET

Fraction of events with hardest jet = τ jet for $E_t^{jet} > 100$ GeV: 75 %

Jets in tH^+ , $H^+ \rightarrow \tau \nu$, $t \rightarrow qqb$ events

Fraction of events with hardest jet = τ jet for $E_t^{jet} > 100$ GeV: 72 %

Event selection for tH^+ , $H^+ \rightarrow \tau \nu$, $\tau \rightarrow h^+ + X$

1) τ selection:

jet,
$$E_t > 100$$
 GeV, $|\eta| < 2.5$ containing one track with $r = p^h/E^{jet} > 0.8$, $\Delta R(jet,track) < 0.1$

- 2) $E_t^{miss} > 100 \text{ GeV}$
- 3) W and top mass reconstruction from jets with $E_t > 20 \text{ GeV}$ minimizing $\chi = (m_{jj} m_W)^2 + (m_{jjj} m_{top})^2$
- 4) W mass cut, $|m_{ii}$ m_W | < 15 GeV
- 5) top mass cut, $|m_{jjj} m_{top}| < 20 \text{ GeV}$
- 6) Tagging of the jet not assigned to W with $E_t > 30$ GeV, $|\eta| < 2.5$, efficiencies from TDR (2 tracks, $p_t > 1$, GeV, $\sigma^{ip} > 2$): 50% for b-jets, 1.3 % for non-b-jets
- 7) Central jet veto, $E_t^{jet} > 40 \text{ GeV}$
- 8) Second top veto, $|m_{\tau\nu j^-} m_{top}| > 130 \text{ GeV}$
- 9) transverse mass reconstruction $m_T(\tau \text{ jet, } E_t^{\text{miss}})$

τ selection for one prong τ jets

one pion with $r = p^h / E^{jet} > 0.8$ within $\Delta R(\text{calo jet axis,track}) < 0.1$

E_t^{miss} in tH^+ , $H^+ \rightarrow \tau \nu$, $t \rightarrow qqb$ events

Reconstruction with CMSJET

Reconstruction of m_W and m_{top} in $gb \rightarrow H^+\bar{t}$

using the jet energy correction from V. Drollinger

- 1. Selection of events with at least 3 jets, $E_t > 20 \text{ GeV}$
- 2. Reconstruction of m_W and m_{top} from j_1 , j_2 , j_3 minimizing $(m_{jjj}$ $m_{top})^2$ + $(m_{jj}$ $m_W)^2$
- 3. Tagging of j_3 as a b-jet

Reconstruction of m_{top} from top -> $j_1 j_2 j_3$ with W -> $j_1 j_2$

 $m_T(\tau jet, E_t^{miss})$

$$\label{eq:tau_signal} \begin{split} signal \ / \ background \ for \ 10^5 \ pb^{\text{-}1} \\ \tau \ selection \ p^h/p^\tau > 0.8 \end{split}$$

Veto on a second top in tt events

Reconstruction of top mass from τ jet, E^{miss} and one remaining jet

Reconstruction of $p_L^{\ \nu}$ from W mass constraint

Top veto cut with $m(\tau \text{ jet,} E^{\text{miss}}, \text{jet}) > 300 \text{ GeV}$

Central jet veto

 E_t of the hardest jet after W and top mass reconstruction within ($|\eta|$ <2)

Number of jets $E_t > 50$ GeV, $|\eta| < 2$

$m_T(\tau \text{ jet, } E_t^{\text{ miss}}), Lt = 100 \text{ fb}^{-1}$

with veto on a central jet, $E_t^{\ jet}>40$ GeV, $|\eta^{\ jet}|<2$ and veto on a second top, $|m_{\tau\nu j}$ - m_{top} |>130 GeV

Events for $10^5 \, \text{pb}^{-1}$

	Signal	Background
		tt, Wtb, W+jet
$m_{T}(\tau \text{ jet, E})$		
$m_A = 400 \text{ GeV}$,, $\tan \beta = 30$	68.5	25.6
$m_A = 200 \text{ GeV}, , \tan\beta = 20$	41.1	25.6
$m_A = 600 \text{ GeV}$,, $\tan \beta = 40$	33.5	25.6

$m_T(\tau \text{ jet, } E_t^{\text{ miss}}) > 200 \text{ GeV}$

$m_A = 400 \text{ GeV}, \text{ , } \tan \beta = 30$	61.9	7.8
$m_A = 200 \text{ GeV}$,, $\tan \beta = 20$	12.5	7.8
$m_A = 600 \text{ GeV}, \text{ , } \tan\beta = 40$	31.8	7.8

$m_T(\tau \ jet, \ E_t^{\ miss}) > 100 \ GeV, \ second top \ and \ jet \ veto$

$m_A = 400 \text{ Ge v}, \text{ tanp} = 30$	31.8	4.2
$m_A = 200 \text{ GeV}$,, $\tan\beta = 20$	18.2	4.2
$m_A = 600 \text{ GeV}, \tan \beta = 40$	17.9	4.2

Conclusion

• Preliminary results for pp -> tH^+ , H^+ -> τv :

Events for $m_T(\tau \text{ jet, } E_t^{\text{miss}}) > 200 \text{ GeV}, \quad 10^5 \text{ pb}^{-1}$ Signal, $m_A = 400 \text{ GeV} \ (m_{H+} = 410 \text{ GeV}), \ \tan\beta = 30$ 39 Background 7.8 (~2.1 events from $t\bar{t}$, ~2.0 from W+jet, ~3.7 from Wtb)

expected parameter space coverage for 100 fb⁻¹

Physics meeting, 10 February, 2000

Trigger requirements for

$$\mathbf{g}\mathbf{b} \rightarrow \mathbf{H}^{+}\overline{\mathbf{t}}; \quad \mathbf{H}^{+} \rightarrow \tau^{+}\nu, \quad \overline{\mathbf{t}} \rightarrow \overline{\mathbf{b}}\mathbf{q}\overline{\mathbf{q}}$$

R. Kinnunen

- Almost background-free signal expected in $m_T(\tau v)$
- $m_T(\tau v)$ reconstruction usefull only in the purely hadronic channel
- τ polarization provides a large reduction of the $t\bar{t}$ background in the hadronic one prong decay channel $\tau \rightarrow \pi^+ + \nu$
- a purely hadronic trigger with $n_{jet} \le 4$ ($E_t^{jet} > 20$ GeV) including one hard τ jet ($E_t^{jet} > 100$ GeV) is needed